

Developed in partnership with Guardant Health

Finding the Fragments: ctDNA in Lung Cancer

Oct 09, 2023

Cambridge, England This meeting has been organised by NHS East Genomics and sponsored by Guardant Health

Agenda

Time	Title	Speaker
4:00pm	Welcome and introduction to ctDNA / GMSA pilot project	Dr Brent O'Carrigan (Medical Oncology Consultant (Melanoma and renal cancer), CUH, Deputy Chair, NCRI Skin Group, Clinical Cancer Lead, NHS East Genomics Laboratory Hub (GLH))
4:10pm	Case Studies	Dr Frank McCaughan (Honorary Consultant in Respiratory Medicine and lead clinician for lung cancer, CUH) and Tiago Verissimo (Lung Clinical Nurse Specialist, CUH)
4:30pm	Audit of CUH experience	Dr David Favara (Clinical Lecturer in Medical Oncology, University of Cambridge)
4:40pm	Current pathway for ctDNA requesting	Dr Brent O'Carrigan and Col Spencer (Programme Manager, East GMSA)
4:50pm	Audience Q&A	All
5:00pm	Close	All

Developed in partnership with Guardant Health

National lung cancer circulating tumour DNA (ctDNA) pilot

Dr Brent O'Carrigan

Clinical Cancer Lead, NHS East Genomics

Medical Oncologist

b.ocarrigan@nhs.net

Targetable alterations in advanced cancer: NSCLC example

Many lung adenocarcinoma drivers are known^{1,2}

Up to 40% are targetable today

High prevalence of targetable mutations (~40%)¹

Increasing demand on lung tissue specimens

- Histological diagnosis
- Additional stains
- Immunotherapy markers
- Markers for targeted therapy

NHS

East Genomics

National Lung Cancer Audit: Molecular testing in advanced lung cancer 2019 (for diagnoses in 2017)

Long turnaround times may lead to inappropriate early chemotherapy in

patients with an EGFR

mutation

- 18-day median turnaround time from tissue acquisition to *EGFR* mutation result
- 11.5% of patients required second biopsies to obtain molecular results

However...There is room for improvement for 'Right drug first time' metric

- 75% of patients with an EGFR mutation received a first-line TKI
- 58% of those with an ALK translocation received a targeted first-line treatment with an approved TKI

ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand 1; TKI, tyrosine kinase inhibitor. Spotlight audit on molecular testing in advanced lung cancer 2019 (for diagnoses in 2017) https://www.rcplondon.ac.uk/projects/outputs/spotlight-audit-molecular-testingadvanced-lung-cancer-2019-diagnoses-2017 October 2023

Slide courtesy Guardant Health

What is circulating tumour DNA? (ctDNA)

Wan JCM et al, Nat Rev Cancer, 2017

Nature Reviews | Cancer

Potential uses of ctDNA

9 Oct 2023

ctDNA in lung cancer is non-invasive

Di Capua et al, Cancers 2021

What is Guardant360?

Clinically validated comprehensive genomic profiling (CGP) liquid biopsy to help guide treatment decisions for patients with advanced solid tumours, including NSCLC¹

- Simple, non-invasive blood draw
- Detects guideline-recommended genomic alterations for NSCLC^{2,3}
- Delivers results in 7 days
- Complementary to molecular testing on tissue biopsy samples
 - Delivers complete results, for more patients, faster than tissue⁴
 - Enables complete testing for 3 times more patients than tissue^{4*}
- Can be used ahead of tissue genotyping for every newly diagnosed patient with advanced NSCLC to help accelerate time to complete biomarker results

NSCLC, non-small cell lung cancer.

*For the 4 alterations for approved therapies.

1. Odegaard JI, et al. Clin Cancer Res 2018;24:3539–3549; 2. Mosele F, et al. Ann Oncol 2020;31:1491–1505; 3. NCCN Clinical Practice Guidelines, NSCLC version 6.2021. https://www.nccn.org/. Accessed 25 October 2021; 4. Leighl NB et al. Clin Cancer Res 2019;25:4691–4700.

Slide courtesy Guardant Health

Guardant360 detects all NCCN somatic genomic targets and the most important genes in NSCLC with a single

tions and insertions/deletions, with complete (bold) or critical exon coverage

AKT1	ALK	ΑΡϹ	AR	ARAF	ARID1A	ΑΤΜ	BRAF	BRCA1	BRCA2
CCND1	CCND2	CCNE1	CDH1	CDK4	CDK6	CDK12	CDKN2A	CTNNB1	DDR2
EGFR	ERBB2 (HER2)	ESR1	EZH2	FBXW7	FGFR1	FGFR2	FGFR3	GATA3	GNA11
GNAQ	GNAS	HNF1A	HRAS	IDH1	IDH2	JAK2	JAK3	КІТ	KRAS
MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAPK1 (ERK2)	МАРКЗ (ERK3)	MET	MLH1	MPL	MTOR	МҮС	NF1
NFE2L2	NOTCH1	NPM1	NRAS	NTRK1	NTRK3	PDGFRA	РІКЗСА	PTEN	PTPN11
RAF1	RB1	RET	RHEB	RHOA	RIT1	ROS1	SMAD4	SMO	STK11
TERT**	TP53	TSC1	VHL						

Guardant360 detects microsatellite instability (MSI)

Guardant360 detects 18 gene amplifications

AR	BRAF	CCND1	CCND2	CCNE1	CDK4	CDK6	EGFR	ERBB2
FGFR1	FGFR2	KIT	KRAS	MET	МҮС	PDGFRA	ΡΙΚЗСΑ	RAF1

Guardant360 detects 6 gene translocations

Guardant360 Panel version 2.11 (2019)

Slide courtesy Guardant Health

Suaruantsou has high sensitivity and high specific	ity
for detecting genomic alterations	

Alteration type	Reportable range	Allelic fraction / copy number	Analytical sensitivity	Analytical specificity*
Single Nucleotide Variants (SNVs)	≥0.04%	>0.25%	100%	97%
		0.05 – 0.25%	64%	
Insertions / Deletions	>0.02%	>0.20%	100%	100%
	_0.0278	0.05 – 0.20%	68%	100/0
Fusions	≥0.04%	>0.20%	95%	100%
		0.05 – 0.20%	83%	
Copy Number Variants (CNVs)	≥2.12 copies	2.24 copies**	95%	100%
MSI	MSH-H detected	>0.1%	95%	100%

Performance specifications based on cell-free DNA input of 30 ng in patient samples of contrived samples; analytical sensitivity cited here are for targeted, clinically important regions. Sensitivity outside these regions or in highly repetitive sequence **C** Per sample, over entire genomic reportable range of Guardant360 panel (Guardant360 Panel version 2.11 (2019)))

** Equivalent to 5% tumour fraction and 8 *ERBB2* (*HER2*) gene copies in tumour.

Slide courtesy Guardant Health

SNV, single nucleotide variants; Indels, insertions and deletions; CNV, copy number variant; MSI-H, microsatellite instability-high Adapted from Odegaard JI, et al. Clin Cancer Res 2018;24:3539–3549 (Supplementary table 1)

High ctDNA Detection Rate Across Multiple Solid Cancers

Internal Guardant Data for CY2019

Liquid biopsy with Guardant 360 results in more patients successfully genotyped in a shorter TAT than tissue testing

Guardant360 performance matches SoC tissue testing detection rates and delivers a faster turnaround time

NILE study (Non-invasive versus Invasive Lung Evaluation)) Leighl, et al. Clin Cancer Res August 1 2019 (25) (15) 4691-4700; DOI: 10.1158/1078-0432.CCR-19-0624

Detection of Tier 1 variants with Guardant360 in patients with NSCLC in UK clinical practice

- 230 UK patients with NSCLC received Guardant360 testing (with matched SOC testing)
- Tier 1 variants defined as variants ready for implementation in routine clinical decisions

	Identical results for pair NGS	d tissue and Guardant360 in 58% sampling/DNA		y tissue vs Guardant360 may panel and limitations of tissue A quantity or quality	
		Tier 1 D	etection: Tissue		
		Yes	No	Total	
Tier 1 Detection: G360	Yes	44 (58%)	32 (42%)	76	
	Νο	7 (6%)	107 (94%)	114	
	Total	51	139	190	
	Negative result with G360 w	vhan tissua is positiva mav	Good concordance be	tween G360 and tissue tests	

reflect lower disease burden and hence low ctDNA level

Good concordance between G360 and tissue tests negative for tier 1 variants

Milner-Watts C, et al. Oral presentation 4, BTOG 2021.

Slide courtesy Guardant Health

Guardant360 improves detection of Tier 1 variants in patients with NSCLC

Guardant360 ctDNA NGS reported results rapidly (median **9 days**) Guardant360 increased breadth of detection of tier 1 genomic variants

- Should be considered routinely in first-line and relapsed advanced NSCLC
- May be of most importance in those with non-squamous histology

Guardant360 may lessen the need for tissue NGS testing or salvage pathway testing if a tier 1 variant is identified

A Pilot of Blood-first – in 50 UK image-suspected Lung cancers

Background

50 radiologically-suspected advanced Lung cancer patients were tested in a single centre during the Covid-19 pandemic.

Primary endpoint

Proportion of patients who commenced targeted treatment based on cfDNA-NGS results without tissue molecular results, predicted to be $\geq 10\%$

Results:

- 22% of patients were able to start targeted therapy before a tissue result was returned
- An additional 15% of patients were able to start chemotherapy based on a ctDNA result alone
- Guardant360 detected 30 (61%) AMP/ASCO/CAP tier 1 variants, including 20 . additional tier 1 variants compared to tissue testing.
- Median TAT for Guardant360 was 9 days vs 25 for SOC tissue test
- Results lead to the first NHSE-backed pilot to access ctDNA in image suspected lung cancer (700 patients) currently running in England
- Cui W, Milner-Watts C, McVeigh TP, et al. A pilot of Blood-First diagnostic cell free DNA (cfDNA) next generation sequencing (NGS) in patients with suspected advanced lung cancer [published online ahead of print, 2022 Jan 20]. Lung Cancer. 2022;165:34-42. doi:10.1016/j.lungcan.2022.01.009

East Genomics Lung Cancer 165 (2022) 34

	Contents lists available at ScienceDirect	CANCER
2.12	Lung Cancer	
ELSEVIER	journal homepage: www.elsevier.com/locate/lungcan	8 -*

6	κ.		
L	1		
c	4		
		١r	

A pilot of Blood-First diagnostic cell free DNA (cfDNA) next generation sequencing (NGS) in patients with suspected advanced lung cancer Wanyuan Cui^a, Charlotte Milner-Watts^a, Terri P. McVeigh^b, Anna Minchom^a, Jaishree Bholse^a, Michael Davidson^a, Nadia Yousaf^{a,c}, Suzanne MacMahon^{d,e}, Hood Mugalaasi^{d,f}, Ranga Gunapala^a, Richard Lee^{a,g,h}, Angela George^{b,i}, Sanjay Popat^{a,c,g}, Mary O'Brien^{a,g,*}

^a Lung Unit. Royal Marsden NHS Foundation Trust. London. United Kingdom Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdon Thoracic Oncology, Institute of Cancer Research, London, United Kingdom ^d Centre for Molecular Pathology, Royal Marsden NHS Foundation Trust, London, United Kingdor Cancer Genomics, North Thames Genomic Laboratory Hub, London, United Kingdom ^f Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdon National Heart and Lung Institute, Imperial College London, London, United Kingdom h Early Diagnosis and Detection, NIHR Royal Marsden and ICR Biomedical Research Centre, United Kingdor Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdon

ARTICLE INFO	A B S T R A C T
Keywords: Lung cancer Non-small cell lung cancer Genomic sequencing Gravitating tumour DNA Targeted therapy	Introduction: The diagnostic pathway for lung cancer can be long. Availability of front-line targeted therapies for NSCLC demands access to good quality tissue for genomic sequencing and rapid reporting of results. Diagnosis of lung cancer and availability of tissue was delayed during the COND-19 pandemic. Methods: A pilot study assessing Guardant360 ¹¹⁴ cDNA-NGS in patients with radiological-suppeted advanced- stage lung cancer was performed at an academic cancer centre during COVD-19. Variants were tiered using AMP/ASCO/CAP guidelines and discussed at a tumour molecular board. The primary endpoint was the pro- portion of patients who commenced trageted treatment based on cDNA-NGS results without tissue molecular results, predicted to be $\geq 10\%$. <i>Results:</i> Between April 2020-May 2021, 51 patients were enrolled; 49 were evaluable. The median age was 7 1 years, 45% were newer-smokers, 36% had stage IV disease. 50% of evaluable cDNA-NGS were informative (tumour-derived cDNA deceted). <i>LDNA-NGS</i> detected 30 (15%) AMP/ASCO/CAP tier 1 variants, including 20 additional tier 1 variants compared to tissue testing. Three patients with non-informative cDNA-NGS meeting to additional tier 1 variants compared to tissue testing. Eleven (22%, 95% CI 12%-27%) patients commenced targeted therapy based on cDNA-NGS results without tissue molecular results, meeting the primary endpoint. Median time to results was shorter for cDNA-NGS compared to standard-of-care tissue tests (9 versus 26 days, P < 0.0001). <i>Conclusion:</i> Blood-first cDNA-NGS in NSCLC patients increased the breasth and rapidity of detection of actionable variants with high tissue concordance and led to timely treatment decision. A blood-first approach should be considered to improve the speed and accuracy of therapeutic decision-making.

1. Introduction	survival outcomes and quality of patients with NSCLC harbouring
The growing availability of genomic sequencing technology has	genes [2-5]; and the Food an
resulted in greater identification of genetic aberrations in non-small cell	approved therapies targeting EGF
lung cancer (NSCLC) and improved targeted therapies [1]. Inhibition of	p.V600E and KRAS p.G12C [6].
an increasing number of driver oncogenes have demonstrated superior	Despite the improved availab

of life compared to chemotherapy in mutations or fusions involving such d Drug Administration (FDA) have R, ALK, ROS1, RET, NTRK, MET, BRAF

ility of first-line targeted therapies for

* Corresponding outpor at Lung Unit, David Manden NHC Foundation Trust London, United Vingda

Slide courtesy Guardant Health

National GMSA lung ctDNA pilot

- Initially n=700 patients nationally
 - n=100 for each of the 7 GLHs
 - Providers: Clinically validated providers of liquid biopsies, including Guardant Health
- Pilot expansion: n=2000
 - Provider: Marsden360*
- Expected to expand to 10,000 patients nationally in 2023/24

East GMSA

• Active:

- Cambridge University Hospitals
- University Hospitals Leicester
- West Suffolk
- Kettering
- In setup:
 - Norfolk & Norwich
 - University Hospitals of Derby & Burton
 - East & North Herts

Developed in partnership with Guardant Health

Case Studies

Dr Frank McCaughan

Honorary Consultant in Respiratory Medicine and lead clinician for lung cancer, CUH

Tiago Verissimo

Lung Clinical Nurse Specialist, CUH

Case 1

Background

- 65 y/o female
- Never smoker
- PMHx
 - Hypertension
- Baseline PS 0
- Presentation
 - 6 weeks progressive back pain
 - Associated with moving furniture
 - Unbearable despite high dose codeine phosphate
- No clinical features of cord compression
- Hyponatraemia
- Imaging investigations were performed

Diagnostic work-up

- SCL Biopsy 22 March 2023
- Cytology report 27 March
 - CK7/TTF1 +ve cells
 - NSCLC adenocarcinoma
 - Molecular profile requested (reflex)
 - Reported 19 April
- Guardant360[®] CDx
 - Blood taken 21 March 2023
 - Reported 28 March

Guardant360[®] CDx result

Summary of Detected Somatic Alterations, Immunotherapy Biomarkers & Associated Treatment Options

Detected Alteration(s) / Biomarker(s)	Associated EMA-Approved Therapies	Clinical Trial Availability (see page 3)	% cfDNA or Amplification	Biomarker Category
EGFR E746_A750del (Exon 19 deletion)	 CDx TAGRISSO[®] (osimertinib) is EMA-approved for this indication Afatinib, Dacomitinib, Erlotinib, Erlotinib, Erlotinib+ramucirumab, Gefitinib, Osimertinib 	Yes	8.37%	1
BRAF G469V	None	Yes	0.21%	4
STK11 V66V	None	No	0.55%	4
TP53 Y205C	None	Yes	4.27%	4

Management

- Dexamethasone
- Radiotherapy
- Analgesia
- Osimertinib 3 April
- 19 April confirmed tissue EGFR Exon 19 deletion

Conclusions

- Earlier diagnosis of EGFR mutated disease via Guardant compared to normal pathway in previously well never-smoker who was admitted in some distress
- Treatment instituted approximately 3 weeks earlier than otherwise would have been the case

Case 2

Background

- 61 yr old female
- Current smoker
- Prior breast cancer (Right)
 - Wide local excision
 - Radiotherapy
- Admitted end December
 - 4 weeks cough/pleuritic chest pain
 - Swinging fever
 - CRP>300
 - Enterobacter cloacae in sputum

Early Investigations/Management

- Broad spectrum antibiotics
- Bronchoscopy/EBUS
 - Negative cytology Station 7,11R
 - Negative microbiology
- Post EBUS sepsis
 - Further broad spectrum antibiotics
 - DRESS syndrome
- New diagnosis severe aortic stenosis

Further Diagnostics

- Diagnostic biopsy (March 3rd)
- Biopsy
 - cytology NSCLC NOS (March 13th)
 - GLH report no mutations detected (March 21st)
- Guardant360[®] CDx (March 9th)
 - Report 19th March

Summary of Detected Somatic Alterations, Immunotherapy Biomarkers & Associated Treatment Options

KEY 🚥 Guardant360 CDx approved indication 🥝 Approved in indication 🙄 Approved in other indication 🛞 Lack of response

Detected Alteration(s) / Biomarker(s)	Associated EMA-Approved Therapies	Clinical Trial Availability (see page 3)	% cfDNA or Amplification	Biomarker Category
APC N372fs	None	No	11.76%	4
BRCA1 A1708T	📀 Olaparib, Talazoparib	Yes	8.59%	4
CCNE1 R240H	None	No	0.22%	4
DDR2 L610L	None	No	7.07%	4
ESR1 V422V	None	No	4.92%	4
STK11 P221L	None	Yes	2.29%	4
TP53 G334V	None	Yes	8.45%	4

- Patient management
 - Deep SCL node (negative)
 - Repeat EBUS (negative)
 - Transcatheter Aortic Valve Implantation
 - Surgical resection

Discussion / Learning Points

- Protracted diagnostic work-up
- ctDNA has the potential to help resolve diagnostic dilemmas in challenging cases
- In this case Guardant360[®] CDx yielded a mutational profile that was not detected from tissue NGS panel

Case 3

Background

- 39 yr old male, army engineer
- Never smoker
- Extremely fit baseline
- Few weeks of fatigue and reduced appetite

Diagnostic work-up

- ctDNA 05/09
 - Reported 27/09
 - (Marsden)
- Liver biopsy 07/09
 - NSCLC (CK7/TTF1+ve) 11/09
 - Reflex molecular profile requested 11/09
 - Molecular report 06/10
 - ALK+ve IHC 14/09

Marsden 360 Result

Marsden360

Developed in partnership with Guardant Health

• RNA: Fusion EML4-ALK confirmed

Analysis results: Clinically relevant variants detected

1 Variant of strong clinical significance, Tier 1	Approved treatments	Trials and Supplementary Information
EML4-ALK, fusion, Pathogenic	Alectinib Brigatinib Ceritinib Crizotinib Lorlatinib	Trials: 1 Phase 4 1 Phase 3 2 Phase 2 2 Phase 1/Phase 2 1 Phase 1
1 Variant of potential clinical significance, Tier 2	Approved treatments	Trials and Supplementary Information
TP53, c.559+1G>A, VAF 6.32%, Pathogenic	-	Trials: 1 Phase 1
Interactions None	Guidelines Potentially relevant guidelines a starting on page 6.	re reported in the "guidelines" section
	Report content Result overview and approval Treatment options Available clinical trials Variant details Report information Selected references Guidelines	Page 1 Page 2 Page 2 Page 4 Page 5 Page 6 Page 6

- Tissue correlation
 - Also reported EML4-ALK fusion
 - No *TP53* mutation reported

Management

- Brigatinib commenced 18 September
- Already responding

Discussion / Learning Points

- "ctDNA" assays can also detect actionable fusion events – ALK, NTRK1-3, ROS1
- Potential to instigate treatment earlier with ctDNA assay
- CNS role in expediting investigations and management decisions including ctDNA assays in appropriate patients

Developed in partnership with Guardant Health

Audit of CUH experience

Dr David Favara

(Clinical Lecturer in Medical Oncology, University of Cambridge)

cfDNA testing in lung cancer: NHS real-world results from a single centre

Main finding: *lung cancer patients with a cfDNA detected targetable driver mutation started treatment 3.5 weeks earlier than those without (2.5 weeks versus 6 weeks; p=0.02).*

David M Favara^{1,2}, Tiago Verissimo^{1,3}, Frank McCaughan^{3,4}

- ¹ Oncology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge UK
- ² Oncology Department, University of Cambridge, UK
- ³ Respiratory Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge UK
- ⁴ Department of Medicine, University of Cambridge, UK

	NHS
Cam	bridge
University HO	spitals

	n	%
Total cases	32 (100%)	100%
Female	18	56%
Mean age (years; range)	71 (57-87)	
Lung diagnoses	25	78%
Non lung cancer diagnoses	7	28%
Biopsy Histology Lung:		
Adenocarcinoma	12	48%
SCC	1	4%
Small cell	3	12%
Not otherwise specified (NOS)	2	8%
Other lung type*	3	12%
No histology (radiological diagnosis)	4	16%
Non-lung Lymphoma Breast cancer	4	57% 14%
Renal cell carcinoma	1	14%
Head and neck SCC	1	14%
Lung cancer patient characteristics		
Female	17	68%
Mean age (years; range)	69.8 (61-87)	
Lung cancer biopsy source		
EBUS	15	60%
Other	9	36%
No biopsy	1	4%
Lung stage		
Stage 1-IIIA	3	12%
Stage IIIB-IV	22	88%

 Table 1: patient characteristics (*large cell lung cancer; spindle cell lung cancer; undifferentiated lung cancer)

NHS
Cambridge
University Hospitals
NHS Foundation Trust

	n	%
cfDNA assay		
Mean time (days) from collection to arrival at US lab	2.8 (2.1-3.7 95% CI)	
Mean time (days) from arrival in US lab to result	6.4 (5.2-7.6 95% CI)	
Mean time (days) from collection to result	9.3 (4.6-10.9 95% CI)	
Tumour biopsy profiling:		
Mean time (days) from biopsy to histology result	10.2 (7.5-12.8 95% CI)	
Mean time from histology to profiling result	16.74 (13.2-20.2 95% CI)	
Mean time (days) from biopsy to profiling result	26.89 (22.3-31.5 95% CI)	
Lung cancer treatments		
Patients treated	16	64%
Patients not treated (poor PS or death)	8	32%
Unknown (patient transferred to another hospital)	1	4%
cfDNA detected targetable driver alterations		
EGFR exon 21 Leu858Arg	3	43%
EGFR exon 19 Glu746_Ala750del	3	43%
EGFR exon 19 Leu747_Pro753delinsSer	1	14%
Biopsy concordance with cfDNA testing		
Yes	17	68%
No	2	8%
No biopsy	6	24%
Treatment implications		
cfDNA expedited 1st line treatment	7	
Time from cfDNA to treatment if ctDNA actionable result	17.6 (13.1-22.2 95% CI)	p=0.02
Time from cfDNA to treatment for non-actionable ctDNA res	sult 42 (21.4-62.6 95%CI)	

 Table 2: cfDNA and biopsy profiling results and effect on treatment

	n	%
cfDNA assay		
Mean time (days) from collection to arrival at US lab	2.8 (2.1-3.7 95% CI)	
Mean time (days) from arrival in US lab to result	6.4 (5.2-7.6 95% CI)	
Mean time (days) from collection to result	9.3 (4.6-10.9 95% CI)	
Tumour biopsy profiling:		
Mean time (days) from biopsy to histology result	10.2 (7.5-12.8 95% CI)	
Mean time from histology to profiling result	16.74 (13.2-20.2 95% CI)	
Mean time (days) from biopsy to profiling result	26.89 (22.3-31.5 95% CI)	
Lung cancer treatments		
Patients treated	16	64%
Patients not treated (poor PS or death)	8	32%
Unknown (patient transferred to another hospital)	1	4%
cfDNA detected targetable driver alterations		
EGFR exon 21 Leu858Arg	3	43%
EGFR exon 19 Glu746_Ala750del	3	43%
EGFR exon 19 Leu747_Pro753delinsSer	1	14%
Biopsy concordance with cfDNA testing		
Yes	17	68%
No	2	8%
No biopsy	6	24%
Treatment implications		
cfDNA expedited 1st line treatment	7	
Time from cfDNA to treatment if ctDNA actionable result	17.6 (13.1-22.2 95% CI)	p=0.02
Time from cfDNA to treatment for non-actionable ctDNA result	lt 42 (21.4-62.6 95%CI)	

Time to starting treatment

Table 2: cfDNA and biopsy profiling results and effect on treatment

Developed in partnership with Guardant Health

Lung ctDNA pilot: Clinical pathway

9 Oct 2023

Dr Brent O'Carrigan

Clinical Cancer Lead, NHS East Genomics

Medical Oncologist

b.ocarrigan@nhs.net

Trust onboarding / activation

• Contact:

• Brent O'Carrigan b.ocarrigan@nhs.net

Documentation	
Patient Leaflet	
Marsden360 SOP	
Electronic test request form	
Instructions for use leaflet	
Marsden360 annotated report to help	
facilitate interpretation of the results	
Access to national data collection tool (excel	
spreadsheet)	

Supplies	
Streck Tubes received	
Safeboxes received	
Marsden360 return address labels received	
for safeboxes received	
Marsden360 tube labels for Streck tubes	
received	
Access to Royal Mail tracking system	

Ordering a Marsden360

For Test Requisition Form (TRF), Instruction leaflet, tube label template and enquiries, please email **Marsden360@rmh.nhs.uk** or telephone **020 8915 6565** For Streck tubes and Royal Mail Safeboxes (Special Delivery; UN3373 compliant) please contact your lead GMSA site.

Blood draw instructions

Collect specimen by venipuncture, filling the two Streck tubes completely

2 Mix by gentle inversion 8 to 10 times

3 Ensure tubes are labelled as instructed in step 2 on the following page

Do not refrigerate or freeze blood samples

Shipping instructions

2

- Fill out labels on each tube including:
- Patient name

- Hospital number Date of birth (dd/mm/yyyy) - Collection date

(dd/mm/yyyy)

Open the Safebox and wrap 3 the sample tubes in the absorbent sheet and place into the grip seal bag and close. Please note one Safebox for two sample tubes only

Place the filled 4 grip seal bag into the PathoSeal bag

3

9 Oct 2023

Shipping instructions

- 6 Place the completed PathoSeal bag and Test Requisition Form (TRF) into the Safebox
- CHECK all contents are included as required before closing
- 8 Close the Safebox ensuring the security tab is tucked in

NHS East Genomics

Shipping instructions

9

Complete the Send and Return address details.

Clinical Genomics The Centre for Molecular Pathology The Royal Marsden NHS Foundation Trust | Cotswold Road Sutton Surrey | SM2 5PT

 Apply prepaid postage label over these instructions ensuring it wraps round and over the tuck in security tab.

> Please record the Tracking number, to enable the Safebox to be tracked during transit

Please take the Safebox to your Trust Postroom for delivery to Clinical Genomics, The Royal Marsden NHS Foundation Trust.

Samples should be received within 48 hours of venepuncture

Developed in partnership with Guardant Health

Q&A / Discussion

